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We report the first observation of the rare n — e*e~ete~(y) decay based on 1.7 fb~! collected by the
KLOE experiment at the DA®NE ¢-factory. The selection of the e*e~ete~ final state is fully inclusive
of radiation. We have identified 362 + 29 events resulting in a branching ratio of (2.4 £ 0.25qr4pckg T
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1. Introduction

The n — eTe~eTe™ decay proceeds through two virtual pho-
tons intermediate state with internal photon conversion to etTe~
pairs. Conversion decays offer the possibility to precisely measure
the virtual photon 4-momentum via the invariant mass of the
ete™ pair. The lack of hadrons among the decay products makes
the matrix element directly sensitive to the n meson transition
form factor [1]. The knowledge of the n meson coupling to virtual
photons is important for the calculation of the anomalous mag-
netic moment of the muon, being pseudoscalar exchange the major
contribution to the hadronic light-by-light scattering.

The first theoretical evaluation, I'(n — ete~ete™)/I'(n —
yy) = 6.6 x 107>, dates from 1967 [2]. The width ratio trans-
lates into a branching ratio (BR) BR(7 — e*e~ete™) =2.59 x 107>
when the world average of the BR(n — yy) measurements [3] is
taken as normalization factor. Other predictions exist in literature
[4-7], with differences at the level of 10%.

Double lepton-antilepton 7 decays have been searched by the
CMD-2 and the WASA experiments, obtaining the upper limits
at 90% C.L, BR(n — ete"eTe™) < 6.9 x 10~ [8] and BR(p —
ete"ete™) < 9.7 x 107 [9], respectively.

2. The KLOE detector

The KLOE experiment operates at DA®NE, the Frascati ¢-
factory. DA®NE is an ete™ collider running at a center of mass
energy of ~ 1020 MeV, the mass of the ¢ meson. Equal energy
positron and electron beams collide at an angle of 7 — 25 mrad,
producing nearly at rest ¢ mesons.

The detector consists of a large cylindrical Drift Chamber (DC),
surrounded by a lead-scintillating fiber electromagnetic calorime-
ter. A superconducting coil around the EMC provides a 0.52 T
field. The beam pipe at the interaction region is spherical in shape
with 10 cm radius, it is made of a beryllium-aluminum alloy
of 0.5 mm thickness. Low beta quadrupoles are located at about
450 cm distance from the interaction region. The drift cham-
ber [10], 4 m in diameter and 3.3 m long, has 12,582 all-stereo
tungsten sense wires and 37,746 aluminum field wires. The cham-
ber shell is made of carbon fiber-epoxy composite with an inter-
nal wall of 1.1 mm thickness, the gas used is a 90% helium, 10%
isobutane mixture. The spatial resolutions are oxy ~ 150 pm and
o0, ~ 2 mm. The momentum resolution is o (p1)/p1 ~ 0.4%. Ver-
tices are reconstructed with a spatial resolution of ~ 3 mm. The
calorimeter [11] is divided into a barrel and two endcaps, for a
total of 88 modules, and covers 98% of the solid angle. The mod-
ules are read out at both ends by photomultipliers, both in am-
plitude and time. The readout granularity is ~ (4.4 x 4.4) cm?,
for a total of 2440 cells arranged in five layers. The energy de-
posits are obtained from the signal amplitude while the arrival
times and the particles positions are obtained from the time differ-

ences. Cells close in time and space are grouped into calorimeter
clusters. The cluster energy E is the sum of the cell energies. The
cluster time T and position R are energy-weighted averages. En-
ergy and time resolutions are og/E = 5.7%/+/E(GeV) and o; =
57 ps/E(GeV) & 100 ps, respectively. The trigger [12] uses both
calorimeter and chamber information. In this analysis the events
are selected by the calorimeter trigger, requiring two energy de-
posits with E > 50 MeV for the barrel and E > 150 MeV for the
endcaps. A cosmic veto rejects events with at least two energy
deposits above 30 MeV in the outermost calorimeter layer. Data
are then analyzed by an event classification filter [13], which se-
lects and streams various categories of events in different output
files.

3. Event selection

The analysis has been performed using 1733 pb_1 from the
2004-2005 data set at /s ~ 1.02 GeV. 242 pb~! of data taken
off-peak at /s =1.0 GeV were used to study the ete~ contin-
uum. Monte Carlo (MC) events are used to simulate the signal
and the background. The signal is generated according to the ma-
trix element in [5], assuming BR = 2.7 x 107>, in a sample of
167,531 pb~!. Other MC samples are: 3447 pb~! simulating the
main ¢ decays (¢ — KK and ¢ — pm) and 17,517 pb~! simu-
lating others more rare ¢ decays. All MC productions account for
run by run variations of the main data-taking parameters such as
background conditions, detector response and beam configuration.
Data-MC corrections for calorimeter cluster energies and tracking
efficiency, evaluated with radiative Bhabha events and ¢ — pm
samples respectively, have been applied. Effects of Final State Ra-
diation (FSR) have been taken into account using the PHOTOS MC
package [14,15]. This package simulates the emission of FSR pho-
tons by any of the decay products taking also into account the
interference between different diagrams. PHOTOS is used in the
Monte Carlo at the event generation level, so that our simulation
fully accounts for radiative effects.

At KLOE, n mesons are produced together with a monochro-
matic recoil photon (E, =363 MeV) through the radiative decay
¢ — ny. In the considered data sample about 72 x 10% n’s are
produced. As first step of the analysis, a preselection is performed
requiring at least four (two positive and two negative) tracks ex-
trapolated inside a fiducial volume defined by a cylinder centered
in the interaction point and having radius R =4 cm and length
Az =20 cm. For each charge, the two tracks with the highest
momenta are selected. One and only one neutral cluster, having
energy Eq > 250 MeV and polar angle in the range (23°-157°), is
required. A cluster is defined neutral if it does not have any asso-
ciated track and has a time of flight compatible with the photon
hypothesis. To improve the energy and momentum resolution, a
kinematic fit is performed imposing the four-momentum conser-
vation and the photon time of flight. A very loose cut on the x2 of
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Fig. 1. Dee VS M, evaluated at the drift chamber wall for MC ¢ — ny background
(top panel) and MC signal (bottom panel). Events in the box Me.(DCW) < 30 MeV N
Dee(DCW) < 2 cm are rejected.

the kinematic fit (2 < 4000) is applied in order to discard poorly
reconstructed events.

4. Background rejection

Two sources of background are present:

1. ¢ background:
This is mainly due to ¢ — wT7~ 70 events (with 7° Dalitz
decay) and to ¢ — 1y events either with n — wt7~70 (with
79 Dalitz decay) or n — mTm~ete™ or with n — ete"y
(with photon conversion on the Beam Pipe, BP, or the DC in-
ner Wall, DCW). This last background has the same signature
of the signal. Background from ¢ — KK is also present at the
preselection level.

2. ete™ continuum background:
This is mainly due to eTe™ — ete~(y) events with photon
conversions, split tracks or interactions in the DA®NE low beta
quadrupoles. This background has been studied using off-peak
data taken at /s =1 GeV, where ¢ decays are negligible.

0

A first background rejection is performed cutting on the sum of the
absolute value of the momenta of the four selected tracks requiring
(600 < "7 |pi| < 700) MeV.

To remove eTe~ continuum background from interactions in
the low beta quadrupoles, the quantities (coséy) and (cos6,) have
been defined as the average polar angle of forward and backward
selected particles. Events having (cosfy) > 0.85 and (cosf) <
—0.85 are rejected. This cut has no effect on signal selection ef-
ficiency.

To reject events due to photon conversion, each track is extrap-
olated backward to the intersection with the BP and with the DCW.
For each track pair, the invariant mass (Mee) and the relative dis-
tance (De) are computed. A clear signal of photon conversion is
visible in the Dee—Mee 2D plot for BP and DCW (Fig. 1). Events
having at least one combination satisfying Me.(BP) < 10 MeV and
Dee(BP) <2 cm or Mee (DCW) < 30 MeV and D¢ (DCW) < 2 cm are
rejected.

The last rejection is based on the Particle IDentification (PID) of
charged particles. For each track associated to a calorimeter cluster,
the quantity At = tyqck — teuster in both electron and pion hypoth-
esis is evaluated; ty is defined as the length of the track divided
by B(m)c. Track with At./At; < 1(> 1) are identified as electron
(pion). Events having more than two pions or no electrons are dis-
carded.

The effects of background rejection cuts on the various data
components are visible in Fig. 2, where the four electrons invari-
ant mass, Me+e-e+e-, iS shown at different steps of the analysis.
In Table 1, number of events in data, N(data), MC signal effi-
ciencies, &(sig), and background rejection factor R, defined as the
ratio of analysis efficiency between signal and background, are
also reported. The R value has been evaluated for three different
categories: ¢ — ny with n — eTe™y (Rysete=y ) & — KK and
¢ — pmw (RzzHKf(/pn) and all other ¢ decays products (Rothers)-
After all cuts, background from kaons and ¢ — w+tm~ 70 events is
negligible. The same holds for all other ¢ decays but n — eTe™y
which, as will be shown in the next section, results in ~ 15%
contamination level. Systematics on the Monte Carlo description
of photon conversion have been studied using events with simi-
lar characteristics. A clean control sample is provided by the ¢ —
nete=, n — wtw~7% decay chain, where simple analysis cuts
provide a good data-MC agreement, with negligible background
contamination. As for the n — eTe~ete™ channel, before dedi-
cated analysis cuts the control sample is significantly contaminated
by background from photon conversion (¢ — ny with photon con-
verting on beam pipe or drift chamber walls). This background
is completely removed rejecting events with De.(DCW) < 10 cm
and Me.(DCW) < 80 MeV. For the n — ete~eTe™ channel this
cut has not been applied because, having two electrons and two
positrons in the final state, the search for a conversion has to
be performed over all the four ete~ combinations, thus spread-
ing the signal contribution in the Mee (DCW)-D¢e (DCW) plane and
lowering significantly the analysis efficiency. Removing the cuts on
Mee-Dee planes in the control sample, a clear background con-
tamination from photon conversion is visible. Data-MC comparison
shows that, increasing in the simulation the probability of conver-
sion by 10%, an excellent agreement is found. A 10% systematic
error is then assigned to photon conversion and added to the
uncertainties coming from MC statistics and BR(y — ete~y) mea-
surement [3]: N( — e*e”y) =80 = 3pc =& 8pr % 8gyst.

5. Evaluation of the BR(y — e*e"eTe~(y))

As discussed in the previous section, the only significant back-
ground contamination surviving all the analysis cuts is due to
n — ete~y events with photon conversion, that have a signature
similar to the signal. The overall estimated background from ¢ de-
cays has been subtracted bin-by-bin to the M+e—e+.~ Spectrum
obtained in data (Fig. 3 top), taking into account also systematic er-
rors. The event counting is done fitting the resulting spectrum with
the two residual contributions: signal and eTe~ continuum back-
ground events. The M+.-.+.- shape for the signal is obtained by
fitting MC events with two Gaussian functions plus a third order
polynomial function. The fit range is 500 < M,+,-e+o— < 600 MeV.
The M,+e—o+o— distribution for ete™ continuum events has been
studied on the data taken at /s =1 GeV, where contributions
from ¢ decays are suppressed. Even though the small statistics of
the sample does not allow to precisely extract the shape, a first
order polynomial well reproduces the data in the signal region.
The free parameters are an overall scale factor for signal and the
two parameters describing the ete~ continuum background. Fit
results are shown in Fig. 3 bottom. The resulting x2/ndf is 43.9/34,
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Table 1
Number of events in data, MC signal efficiency, background rejection factor at different steps of the analysis.
Cut N(data) £(sig) Rysetey R¢»KI’</pn Rothers
Preselection 451,924 0.285(1) 1.86(2) x 10? 5.01(2) x 103 1.435(8) x 103
X2 36,282 0.217(1) 2.01(3) x 102 1.13(1) x 10° 3.44(5) x 10*
ZHBil 16,811 0.216(1) 2.68(5) x 102 2.21(3) x 10° 6.9(1) x 10*
cos 6, cosby 15,003 0.216(1) 2.68(5) x 10? 2.21(3) x 10° 6.9(1) x 10*
y conversion 12,198 0.209(1) 1.11(4) x 103 2.53(3) x 10° 1.13(3) x 10°
PID 4239 0.205(1) 1.12(4) x 103 1.02(8) x 107 5.1(3) x 10°
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Fig. 2. M,+.-o+.- distribution after different analysis cuts: white: after the 2‘1‘ |pi| and the (cos@) cuts; grey: after the cut on photon conversion; black: after the PID
requirement. Top left: data; top right: off-peak; bottom left: ¢ background Monte Carlo; bottom right: signal Monte Carlo.

corresponding to P(x?) = 0.12. The number of signal events is
N(n— ete~ete™) =362 £ 29. The branching ratio has been eval-
uated according to the formula:

BR(n — ete"eTe ()

_ Nr;»e*e*e*e*(y) . 1 (1)

Nyy €n—ete~ete(y)

where Ny, e+e-ete-(y) IS the number of signal events and
€pete-ete(y) is the efficiency taken from MC. The number
of ¢ — ny events, Ny,, has been obtained using the formula
Nyy =L -0¢py, where L is the integrated luminosity and the
cross section oy .y, has been evaluated taking into account the
¢ meson line shape on a run by run basis [16]. Inserting all the
numbers quoted in Table 2, the value:

BR(n — eTe"eTe (y)) = (2.44 £ 0.19q¢ bekg) X 107° (2)

Table 2
Summary of the numbers used in the master formula (1) for the
branching ratio evaluation.

BR inputs Values
Number of events 362 +29
Efficiency €, e+e-ete—(y) 0.205 £ 0.001

(1733 +£10) nb~!
(41.740.6) pb

Luminosity
eTe™ — ¢ — ny cross section

is obtained, where the error accounts for the uncertainty of the fit
result.

The systematic uncertainties due to analysis cuts have been
evaluated by applying separately a variation of +10 on all vari-
ables and re-evaluating the branching ratio. The o values have
been obtained using MC signal events. For the x?2 variable the
cut has been moved by £500, while the particle identification cut
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Fig. 3. Top panel: Me+,-o+.- data distribution at the end of the analysis chain; the
expected ¢ background MC shape is shown in grey. Bottom panel: Mg+t fit to

data after ¢ background subtraction.

Table 3
Summary table of systematic uncertainties.

Source of uncertainty

Relative error

X2 —0.51%/ + 2.62%
(cos6p) and (cos6y) —0.04%/ + 0.47%
1 1Bl +0.11%
y conversion —0.74%/ +2.43%
PID +1.84%
Fit range —0.38%/ +1.13%

Binning on Me+e—e+e-
Background slope

—3.21%/ 4 0.19%
+0.38%

Normalization +1.64%

Total —3.73%/ + 4.53%

has been changed by £10%. The systematic error on the fit to the
Me+e—e+e- distribution has been evaluated considering:

e the binning of the My+,—p+.- histogram, changed from 3 MeV,
used as default, to 2 and 4 MeV;

e the M,+.-.+.- range, enlarged and reduced by 10 MeV on
both sides;

e the slope of the ete~ continuum background has been fixed
to the value obtained from off-peak data fit.

The relative variation of the BR for each source of systematic un-
certainty is reported in Table 3. The uncertainty on Ny, has been
added to the systematics in the normalization term. The total error
is taken as the quadratic sum of all contributions.

6. Conclusions

Using a sample of 1.7 fb™' collected in the ¢ meson mass
region, the first observation of the n — ete~ete (y) decay has
been obtained on the basis of 362 429 events. The corresponding
branching ratio is:

BR(n — efe~eTe™(y))
= (2.4 % 0. 20t bekg £ 0-Tsyse) x 107°. (3)

Radiative events slightly modify momentum distribution of the
charged particles and have been carefully considered in the effi-
ciency evaluation. As a result, the measured branching ratio is fully
radiation inclusive.

Our measurement is in agreement with theoretical predictions,
which are in the range (2.41 —2.67) x 107> [2,4-7].
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